Confining Excitation Energy in Er3+ -Sensitized Upconversion Nanocrystals through Tm3+ -Mediated Transient Energy Trapping.
نویسندگان
چکیده
A new class of lanthanide-doped upconversion nanoparticles are presented that are without Yb3+ or Nd3+ sensitizers in the host lattice. In erbium-enriched core-shell NaErF4 :Tm (0.5 mol %)@NaYF4 nanoparticles, a high degree of energy migration between Er3+ ions occurs to suppress the effect of concentration quenching upon surface coating. Unlike the conventional Yb3+ -Er3+ system, the Er3+ ion can serve as both the sensitizer and activator to enable an effective upconversion process. Importantly, an appropriate doping of Tm3+ has been demonstrated to further enhance upconversion luminescence through energy trapping. This endows the resultant nanoparticles with bright red (about 700-fold enhancement) and near-infrared luminescence that is achievable under multiple excitation wavelengths. This is a fundamental new pathway to mitigate the concentration quenching effect, thus offering a convenient method for red-emitting upconversion nanoprobes for biological applications.
منابع مشابه
The Upconversion Luminescence of Er3+/Yb3+/Nd3+ Triply-Doped β-NaYF4 Nanocrystals under 808-nm Excitation
In this paper, Nd3+-Yb3+-Er3+-doped β-NaYF₄ nanocrystals with different Nd3+ concentrations are synthesized, and the luminescence properties of the upconversion nanoparticles (UCNPs) have been studied under 808-nm excitation for sensitive biological applications. The upconversion luminescence spectra of NaYF₄ nanoparticles with different dopants under 808-nm excitation proves that the Nd3+ ion ...
متن کاملA spectroscopic analysis of blue and ultraviolet upconverted emissions from Gd3Ga5O12:Tm3+, Yb3+ nanocrystals.
The spectroscopic behavior of gadolinium gallium garnet (Gd3Ga5O12, GGG) nanocrystals codoped with 1% each of Tm3+ and Yb3+ prepared via a solution combustion synthesis procedure was investigated. Initial excitation of the codoped nanocrystals with 465.8 nm (into the 1G4 state) showed a dominant blue-green emission ascribed to the 1G4-3H6 transition as well as red and NIR emissions from the 1G4...
متن کاملEnabling Photon Upconversion and Precise Control of Donor–Acceptor Interaction through Interfacial Energy Transfer
Upconverting materials have achieved great progress in recent years, however, it remains challenging for the mechanistic research on new upconversion strategy of lanthanides. Here, a novel and efficient strategy to realize photon upconversion from more lanthanides and fine control of lanthanide donor-acceptor interactions through using the interfacial energy transfer (IET) is reported. Unlike c...
متن کاملEffect of Eu3+ codoping on upconversion luminescence in Y2O3:Er, Yb3+ nanocrystals
The influence of Eu3+ on the upconversion (UC) fluorescence of Er3+ in Y2O3:Er, Yb3+ nanocrystals was investigated. Room-temperature UC spectra show that the intensity ratio of red to green lights was increased from 8.6 to 19.3 with 1.0 mol% Eu3+ doping. Additionally, with the increase of Eu3+ ion concentration, the n values for both green and red UC emissions in Y2O3:Er, Yb3+ nanocrystals beco...
متن کاملStudy of broadband near-infrared emission in Tm3+-Er3+ codoped TeO2-WO3-PbO glasses.
In this work, we report the near-infrared emission properties of Tm(3+)-Er(3+) codoped tellurite TeO(2)-WO(3)-PbO glasses under 794 nm excitation. A broad emission from 1350 to 1750 nm corresponding to the Tm(3+) and Er(3+) emissions is observed. The full width at half-maximum of this broadband increases with increasing [Tm]/[Er] concentration ratio up to a value of ~ 160 nm. The energy transfe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Angewandte Chemie
دوره 56 26 شماره
صفحات -
تاریخ انتشار 2017